Incomplete Tambara functors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incomplete Tambara Functors

For a “genuine” equivariant commutative ring spectrum R, π0(R) admits a rich algebraic structure known as a Tambara functor. This algebraic structure mirrors the structure on R arising from the existence of multiplicative norm maps. Motivated by the surprising fact that Bousfield localization can destroy some of the norm maps, in previous work we studied equivariant commutative ring structures ...

متن کامل

Hopf Algebra Extensions of Group Algebras and Tambara-yamagami Categories

We determine the structure of Hopf algebras that admit an extension of a group algebra by the cyclic group of order 2. We study the corepresentation theory of such Hopf algebras, which provide a generalization, at the Hopf algebra level, of the so called Tambara-Yamagami fusion categories. As a byproduct, we show that every semisimple Hopf algebra of dimension < 36 is necessarily group-theoreti...

متن کامل

Copower functors

We give a common generalization of two earlier constructions in [2], that yielded coalgebraic type functors for weighted, resp. fuzzy transition systems. Transition labels for these systems were drawn from a commutative monoid M or a complete semilattice L, with the transition structure interacting with the algebraic structure on the labels. Here, we show that those earlier signature functors a...

متن کامل

Modular Functors

We prove in this paper that the genus zero data of a modular functor determines the modular functor. We do this by establishing that the S-matrix in genus onewith one point labeled arbitrarily can be expressed in terms of the genus zero information and we give an explicit formula. We do not assume the modular functor in question has duality or is unitary, in order to establish this. CONTENTS

متن کامل

Webster’s Functors

We start with a warm-up: we explain Nakajima’s construction of the geometric sl2-action on ⊕ v Hmid(T ∗Gr(v, w)). 1.1. Warm-up: Nakajima’s geometric action. The lagrangian subvariety φ−1(0) ⊂ M(v) is easily seen to be the zero section Gr(v, w) ⊂ T ∗Gr(v, w). Indeed, consider the action of C× on M(v) induced from the C×-action on T ∗R by fiberwise dilations. Under the identification ofM(v) with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2018

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2018.18.723